skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chmielewski, Annette"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Use of diabetes technology (CGM, pump) is recommended for people with T1D, and early CGM initiation leads to improved glucose values. We compare %CGM and %pump use and time to initiation from T1D diagnosis in the Historical cohort, 4T Pilot, and 4T Study 1 and the associated workflow changes to increase early technology use. CGM initiation within 30 days of diagnosis increased from 2% in the historical cohort to 92% in Pilot 4T to 98% in 4T Study 1 (Table). Days to pump initiation from TID diagnosis decreased from 272 in the historical cohort to 144 days in Study 1. From 2014-2016 pumps and CGM were initiated when families expressed interest or if the provider discussed them. Families were required to attend a pre-pump class where the CDCES introduced pumps and CGMs prior to starting technology. During the 4T Pilot and 4T Study 1, CGMs were introduced and started during the first month of diagnosis. In Study 1, families were encouraged to attend pump class and initiate AID. The CDCES team does the CGM teach, CGM follow-up, pre-pump classes, and insulin pump starts for the families in preferred language. In 4T Study 2 (enrolling) standard of care is to complete a pre-pump class in the first 3 months after diagnosis. Changes in processes can lead to early implementation of diabetes technology. A structured, team-based process to introduce, reduce barriers, and encourage families to utilize diabetes technology increases early initiation. Disclosure B.P.Conrad: Advisory Panel; Edgepark medical supplies, Consultant; Abbott Diabetes. P.Prahalad: None. D.M.Maahs: Advisory Panel; Medtronic, LifeScan Diabetes Institute, MannKind Corporation, Consultant; Abbott, Research Support; Dexcom, Inc. F.K.Bishop: None. J.Leverenz: None. A.Chmielewski: None. P.Sagan: None. J.Senaldi: None. A.Martinez-singh: None. S.Lin: None. I.Chan: None. Funding National Institute of Diabetes and Digestive and Kidney Diseases (R18DK122422); The Leona M. and Harry B. Helmsley Charitable Trust (G-2002-04251-2); International Society for Pediatric and Adolescent Diabetes/JDRF (1P30DK, 11607401); Lucile Packard Child 
    more » « less
  2. Objective:Develop workflows and billing processes for a Certified Diabetes Care and Education Specialist (CDCES)-led remote patient monitoring (RPM) program to transition the Teamwork, Targets, Technology, and Tight Control (4T) Study to our clinic’s standard of care. Methods:We identified stakeholders within a pediatric endocrinology clinic (hospital compliance, billing specialists, and clinical informatics) to identify, discuss, and approve billing codes and workflow. The group evaluated billing code stipulations, such as the timing of continuous glucose monitor (CGM) interpretation, scope of work, providers’ licensing, and electronic health record (EHR) documentation to meet billing compliance standards. We developed a CDCES workflow for asynchronous CGM interpretation and intervention and initiated an RPM billing pilot. Results:We built a workflow for CGM interpretation (billing code: 95251) with the CDCES as the service provider. The workflow includes data review, patient communications, and documentation. Over the first month of the pilot, RPM billing codes were submitted for 52 patients. The average reimbursement rate was $110.33 for commercial insurance (60% of patients) and $46.95 for public insurance (40% of patients) per code occurrence. Conclusions:Continuous involvement of CDCES and hospital stakeholders was essential to operationalize all relevant aspects of clinical care, workflows, compliance, documentation, and billing. CGM interpretation with RPM billing allows CDCES to work at the top of their licensing credential, increase clinical care touch points, and provide a business case for expansion. As evidence of the clinical benefits of RPM increases, the processes developed here may facilitate broader adoption of revenue-generating CDCES-led care to fund RPM. 
    more » « less
  3. Importance Continuous glucose monitoring (CGM) is associated with improvements in hemoglobin A 1c (HbA 1c ) in youths with type 1 diabetes (T1D); however, youths from minoritized racial and ethnic groups and those with public insurance face greater barriers to CGM access. Early initiation of and access to CGM may reduce disparities in CGM uptake and improve diabetes outcomes. Objective To determine whether HbA 1c decreases differed by ethnicity and insurance status among a cohort of youths newly diagnosed with T1D and provided CGM. Design, Setting, and Participants This cohort study used data from the Teamwork, Targets, Technology, and Tight Control (4T) study, a clinical research program that aims to initiate CGM within 1 month of T1D diagnosis. All youths with new-onset T1D diagnosed between July 25, 2018, and June 15, 2020, at Stanford Children’s Hospital, a single-site, freestanding children’s hospital in California, were approached to enroll in the Pilot-4T study and were followed for 12 months. Data analysis was performed and completed on June 3, 2022. Exposures All eligible participants were offered CGM within 1 month of diabetes diagnosis. Main Outcomes and Measures To assess HbA 1c change over the study period, analyses were stratified by ethnicity (Hispanic vs non-Hispanic) or insurance status (public vs private) to compare the Pilot-4T cohort with a historical cohort of 272 youths diagnosed with T1D between June 1, 2014, and December 28, 2016. Results The Pilot-4T cohort comprised 135 youths, with a median age of 9.7 years (IQR, 6.8-12.7 years) at diagnosis. There were 71 boys (52.6%) and 64 girls (47.4%). Based on self-report, participants’ race was categorized as Asian or Pacific Islander (19 [14.1%]), White (62 [45.9%]), or other race (39 [28.9%]); race was missing or not reported for 15 participants (11.1%). Participants also self-reported their ethnicity as Hispanic (29 [21.5%]) or non-Hispanic (92 [68.1%]). A total of 104 participants (77.0%) had private insurance and 31 (23.0%) had public insurance. Compared with the historical cohort, similar reductions in HbA 1c at 6, 9, and 12 months postdiagnosis were observed for Hispanic individuals (estimated difference, −0.26% [95% CI, −1.05% to 0.43%], −0.60% [−1.46% to 0.21%], and −0.15% [−1.48% to 0.80%]) and non-Hispanic individuals (estimated difference, −0.27% [95% CI, −0.62% to 0.10%], −0.50% [−0.81% to −0.11%], and −0.47% [−0.91% to 0.06%]) in the Pilot-4T cohort. Similar reductions in HbA 1c at 6, 9, and 12 months postdiagnosis were also observed for publicly insured individuals (estimated difference, −0.52% [95% CI, −1.22% to 0.15%], −0.38% [−1.26% to 0.33%], and −0.57% [−2.08% to 0.74%]) and privately insured individuals (estimated difference, −0.34% [95% CI, −0.67% to 0.03%], −0.57% [−0.85% to −0.26%], and −0.43% [−0.85% to 0.01%]) in the Pilot-4T cohort. Hispanic youths in the Pilot-4T cohort had higher HbA 1c at 6, 9, and 12 months postdiagnosis than non-Hispanic youths (estimated difference, 0.28% [95% CI, −0.46% to 0.86%], 0.63% [0.02% to 1.20%], and 1.39% [0.37% to 1.96%]), as did publicly insured youths compared with privately insured youths (estimated difference, 0.39% [95% CI, −0.23% to 0.99%], 0.95% [0.28% to 1.45%], and 1.16% [−0.09% to 2.13%]). Conclusions and Relevance The findings of this cohort study suggest that CGM initiation soon after diagnosis is associated with similar improvements in HbA 1c for Hispanic and non-Hispanic youths as well as for publicly and privately insured youths. These results further suggest that equitable access to CGM soon after T1D diagnosis may be a first step to improve HbA 1c for all youths but is unlikely to eliminate disparities entirely. Trial Registration ClinicalTrials.gov Identifier: NCT04336969 
    more » « less